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1 Introduction 

In this talk, I shall give a pedagogical review of general features of Hanbury- 

Brown-Twiss pion interferometry.‘-s. This experimental technique involves mea- 

suring correlations in the two particle emission of pions. The degree of correlation 

is determined by comparing to single particle inclusive distribution functions. The 

technique may be used not only for pions but for any two identical species of parti- 

cles. 

The two particle correlation arises from the interference of the particle wave- 

functions, and depends on whether the particles are bosons or fermions. As we shall 

see, the degree of interference depends upon the degree of coherence of the emitting 

source of the particles, and is maximal for a totally incoherent source. The max- 

imization of the interference from a totally incoherent source is counter intuitive, 

and I shall try to explain this in detail in the talk. 

Perhaps the primary reason that Hanbury-Brown-Twiss pion interferometry is so 

interesting is that it allows for a determination of the size and time scales of the re- 

gion where the particles stop talking to one another. Technically, this region is called 

the decoupling volume. What it means in practice is that in the nucleus-nucleus 

collision, there is a matter distribution produced, and the constituents scatter from 

one another for some time. Perhaps there is enough scattering to produce a ther- 

malized distribution function, or perhaps not. For each particle, there is some more 

or less we4 defined space-time point which corresponds to its last scattering. The 

collection of these points, defines the decoupling space-time volume. 

In Fig. 1, a space-time picture of ultra-relativistic nuclear collisions is shown. 
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The initial nuclei are incident upon the light cone axis t = z and t = --z. The 

nuclei collide at t = z = 0 This collision point is well defined up to the quantum 

mechanical uncertainty in the longitudinal positions of the wee partons of the nuclei. 

At very high energies, this should correspond to a distance scale of d 5 1 Fm. At 

CERN energies, the nuclei are much less Lorentz contracted since the energy is not 

so high. 

In the standard picture of high energy nuclear collisions, the matter is assumed 

to thermal&e at some proper time, r = m, r = rrformat;on. The matter is 

then assumed to hydrodynamically expand until a proper time rdemPl+,s, and there 

is therefore a well defined decoupling surface. 

The standard picture of ultra-relativistic nuclear collisions can be used to simply 

predict pion H-B-T distribution functions, and has been computed by Makhlin- 

Sinyukov and Kolehmainen-Gyulassys-r. We shall refer to this as the GMKS (gim- 

micks) model. Its advantage is that it analytically parameterizes the correlation 

function, and many generic features may be directly studied. Its disadvantage is 

that it is somewhat unrealistic. The particles emitted at decoupling are not emitted 

at a well defined time. As we shall see, there are large fluctuations. The surface 

becomes therefore very spread out, and this spread is reflected in the correlations. 

Also, any effects of the transverse evolution are ignored in the GMKS model. 

The simplest example of a H-B-T interference is shown in Fig. 2. Here there 

are two sources at ~1 and rs. The identical particles are detected at position I. 

There are two possible paths the particles may take from ti,rs to 2. The paths are 

different because the momenta of the particle are different. These paths are shown 

by the solid lines and by the dashed lines. 

To measure the degree of correlation, let the single particle distribution function 

be 
dN - 
d3k 

The two particle distribution function is 

The correlation is measured by 

R(k, k’) = d3~k&~ 
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When there is no correlation, this ratio goes to 1. 

To compute the correlation, we will write the emission amplitude as 

A(k) = -$ p( k)( ea~eaLe zt eiVeiko’) 

In this equation p(k) is a real function which characterizes the source strength, which 

we take to be equal for the two sources. The phases 4 are taken to be different 

between the two sources, and we also ignore any k dependence of the phases. The * 

sign ambiguity is + for bosons and - for fermions. The single particle distribution 

is 

f& = p(k)” (1 zb cos[k. (z -r’) + ++ 4’1) 

When there is incoherent emission, we have 

(,i+-W) = 0 

(5) 

(‘3) 

so that 
dN 
d3k = p(k)’ 

The amplitude for the two particle emission is given by 

A(hk’) = @W [e 
ikm+ik’d+i++i# * ,ik’a+ikd+ib+i#] 

The two particle distribution function is 

dN 

d3kd3k’ 
= p(k)‘p(k’)” (1 f cos[(k - k’)(z - z’)]) 

which is independent of 4 and #. 

The correlation function R for this example is therefore 

(9) 

R(k, k’) = 1 f cos[(k - k’)(z - c’)] (10) 

The correlation function has a characteristic oscillation scale of order Ak N l/Ax. 

Notice that I - I’ is just the distance of separation of the sources. The correlation 

function (In this example the correlation function does not approach one at large 

relative momenta, and oscillates. This is an artifact of having only two sources, and 

for realistic source distributions the correlation function goes to one. The rapidly 

oscillating cosine may be thought of as zero for large relative momenta in the sense 
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of a distribution function.) At zero relative momenta, the correlation function goes 

to 1 i 1 . A realistic distribution is shown in Fig.3 for the two cases of boson and 

fermion correlation. 

Notice in this example, the correlations arose for incoherent particle emission. 

This is a general feature of H-B-T correlations. We shall soon see that for totally 

coherent emission, the correlation function, is identically one, that is there is no 

correlation! 

2 Correction to the Correlation Function from Final State 

Interactions 

The assumption that after emission from the source, the pions do not interact 

is of course an approximation. If the separation between the sources is large, then 

the short ranged nuclear force is not so important. In realistic nuclear collisions, of 

course these corrections are non-negligable and must be computed. In computations 

which as of the date of this meeting which have been compared to experiment, such 

corrections have not been included. 

A correction due to final state interactions which is non-negligable whatever 

the source separation is the long ranged Coulomb interaction. This correction is 

important for the small Ak contribution to the correlation function. It has been 

already taken into account in the data presented at this meeting from the NA35 

collaboration.’ 

The magnitude of the Coulomb correction is scaled by the dimensionless variable 

For pions, 2?ram, N 7Meu This corresponds to a size scale of about 30 Fm, and 

is in fact a substantial correction for the NA35 data. For kaons or protons, the 

correction due to Coulomb final state interactions is obviously more substantial. 

In the classic analysis of Gyulassy et. al., ’ it was shown that final state Coulomb 

correction modify the correlation function R as 

R(k, k’) = ,,zT 1 Ra (W 
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The effect of Coulomb correcting the correlation function is shown in Fig. 4. The 

correction causes the experimentally observed correlation function to go to zero at 

Ak=O. 

3 The Correlation Function for Large Number of Emitted 

Mesons 

In this section, I will discuss the structure of the correlation function when a 

large number of mesons are emitted. I will consider N emission points where the 

coordinate of each emission point is z;. I again ignore a possible momentum depen- 

dence for the phase of the emission amplitude, although it would be straightforward 

to include such a dependence if necessary. 

The amplitude for emission of a meson is 

A(k) = 5 &pipi(k) 
i=l 

I define 

P,(k) = fj& 

and 

(13) 

(14) 

(15) 

Using these definitions, we find 

and 

There are two cases where this formula simplifies. The first is the case of total 

phase coherence, where all of the phases are the same. The second is total phase 

incoherence, where all of the phases at the various emission points are random. 

Consider first the case where all of the phases are coherent, & = 4. Defining 

A(k) = C eikEipi(k) 
t 

cl*) 
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we have 

and 

P,(k) =I A(k) I’ (19) 

P&k’) =I A(k) 1’1 W) I’ (20) 

We see that in this Iimit, 

R(k,k’) = 1 (21) 

Therefore, for totally coherent emission, the pions are totally uncorrelated. 

The other simple case is when the pions are totally incoherent. In this case we 

have 
(JiQi-i&i)) = sij 

(22) 

and 
(,(ih++j-bh+)) = bikbjl + &16jk 

Using these relations in the definitions of Pi and Pa, we find 

(33) 

P,(k) = c I pi(k) I2 
i 

(24) 

and 

where 

&(k, k’) = J’,(k)P,(k’)+ I G(k,k’) 1’ (25) 

G(k, k’) = C ei(k-k’)“‘pi(k)pi(k’) 
i 

(26) 

Notice that from the definition of G that 

G(k, k) = J%(k) (27) 

and 

The correlation function 

lim~k,,G(k, k’) + 0 (28) 

R(k, k’) = 1 + g;$k!; (29) 

The general structure of this correlation has been discussed before, and is shown in 

Fig. 3. The correlation function goes to two at Ak = 0, and is 1 for Ak 2 l/R 

where R is the size of the emission volume. 
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What are the effects of coherence for the emission of a large number of pions? 

In an attempt to provide a qualitative answer to that question, we shall assume 

that the correlations in phase are spatially local. I will first show that if there are 

only irreducible two phase correlations, then the correlation function goes to 2 at 

Ak = 0. For only irreducible two phase correlations, 

(,Wi-ihi)) = cij (30) 

The correlation function Cij is assumed to fall off rapidly when wi and nj are far 

separated in space and time. We assume there is some coherence length associated 

with this fall off, Leo*. The reducible four phase correlation function may be written 

in terms of the irreducible four phase correlation function as 

(ei(+~+~~-~r-+l)) = CikCj, + CilCjk (31) 

When these relations are used in the definitions of PI and Pz, it is straightforward 

to show that R = 2 when Ak = 0. 

The irreducible two phase correlation do however affect the shape of the distri- 

bution given by R(k, k’). The detailed functional form is modified, and cannot be 

simply extracted. We should note that these correlation effects are most significant 

for pions. For kaons and nucleons, the number of produced particles, at least in the 

central region of ultra-relativistic nuclear collisions, is not so large. Therefore we 

expect that these more massive particles will be separated at emission by a distance 

larger than Ld. 

When irreducible 4 phase correlations are taken into account, the magnitude of 

the correlation function is reduced from 2 at Ak = 0. Recall that such a correlation 

function C’iju must vanish when any of the z’s are far separated from the others. 

It is therefore easy to estimate the magnitude of such a correction to PI and to Pa. 

For PI, we have 

ap,- (g’(++ (+J (32) 

This correction to PI is already included in the definition of the irreducible two 

phase correlation function correction. All that we have done here is to show that 

the correction is non-vanishing as V-J./V + 0 The function Pb gets a similar con- 

tribution from the irreducible two phase correlation function, and these corrections 

to Pr and Pa combine together to yield no suppression of R at Ak = 0. 
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The non-trivial contribution to P, arising from the irreducible four phase corre- 

lation is 

Notice that this correction is negative, and can be seen to reduce the value of 

R(k, k) 5 2. 

This correction however vanishes as VL,/V -+ 0. For a pp collision, such a 

correction should be of order one, since the emission volume is of the order of size 

of the correlation length, In a nucleus-nucleus collision, in the limit of large nuclear 

size, R(k, k) = 2. This must be true! Because nuclear collisions involve much larger 

collision volumes, the effects of particle coherence must be much smaller than is the 

case for pp collisions. 

4 The GMKS (Gimmicks) Result for the Inside-Outside 

Cascade 

The inside-outside cascade model for hadron production assumes a distribution 

of pions which is invariant under boosts along the beam axis. Measuring times and 

distances from the collision of the nuclei at t = z = 0, the decoupling is assumed to 

occur at a Lorentz invariant proper time T&, where r = w. The space-time 

rapidity, 

,+n 2 
( > (34) 

is assumed to equal the momentum space rapidity, 

that is y = 7, for the final state pions. At the decoupling time, the pions are assumed 

to be emitted in a cylinder of radius the nuclear radius at a temperature determined 

by the decoupling time and the multiplicity. We shall take the decoupling tempera- 

ture and the final time to be independent parameters in what follows, although one 

can be computed in terms of the other using Bjorken’s hydrodynamic model. 

We now have all the information to construct the correlation function R. The 

space-time volume is assumed to be defined by the decoupling time, a uniform dis- 

tribution in space-time rapidity, and a gaussian distribution with an extent of the 



nuclear radius. The momentum space distributions are assumed to be uniform in 

rapidity, and thermal in transverse momenta. (In order to get an analytic parame- 

terization, the distributions have to be modified a slight bit from thermal, but this 

is inconsequential for the physics of the result). 

The result of such a computation is 

R(k, k’) = 1 + e-q:Rz/2 I Ko(d4 I’ 
Ko(M,IT)Ko(WIT) 

where the variable u is 

u = 2MrM:(r&+ 1/4T~)~osh(Ay)+(M~+M;~)(1/4Ts -r&)+ir~&M; -M;r)/T 

(37) 

There are several interesting qualitative features of this distribution function. 

For very heavy particles, it becomes 

R u 1 + ,-q:R’12e-MTr~cAV’/1 
(38) 

The rapidity correlation length is therefore of order l/rhCm - a&~~~. For 

the case of small mass pions, zbdes - l/T. If coherence effects are important, as 

we expect for pions, then the factor of l/T becomes replaced by a typical particle 

coherence length. 

The ~1 dependence is somewhat amusing. We consider the case of pions. There 

are two separate possibilities. In the first, we take Q to be orthogonal to (pi + P~)~. 

In this case, the scale of fall off in Q is controlled by l/R. In the other case, where 

Q is parallel to (pi + pz)t, then the fslloff is controlled by l/,/m. This point 

has been emphasized by Hama.‘O-” To get a clear determination of the transverse 

radius, and the decoupling time separately, these two components must be isolated. 

5 H-B-T Pion Correlations in a Cascade Computation 

There has been recently an attempt to compute the H-B-T correlation function 

when the final state interaction of pions produced in the nuclear collision are more 

properly taken into account. is In this cascade model, the transition from hadron 

gas to plasma is modeled by taking a distribution of plasma globs, and letting them 

decay into pions. The globs can emit and reabsorb pions as black bodies. In a 
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non-expanding system, this would guarantee that the plasma globs and the pions 

would come into thermal equilibrium at the temperature of emission of pions from 

the globs. In an expanding system, the distribution is more inhomogeneous, as it 

should be. The emitted pions are allowed to scatter from one another with cross 

sections determined from experiment. 

Such a computation has many advantages over the results gotten in the GMKS 

model. The decoupling time is not fixed, and there is a distribution of times. The 

correlation between space-time rapidity and momentum space-rapidity is similarly 

spread out. The transverse coordinates of emission also have a distribution. These 

distributions are shown in Figs. 5a -5c.r” 

6 Miscellaneous Phenomenon Which Can Make R(lc, Ic) 5 2 

As we mentioned above, one mechanism for having R(k, k) 5 2 is by having 

coherent emission of pions. To have this be a significant effect, the emission must be 

coherent over the entire nuclear volume. Needless to say, if this were true, we would 

have to radically re-assess our current understanding of ultra-relativistic nuclear 

collisions.‘s 

Another way to reduce the correlation function is by having a significant con- 

tamination from mis-identified particles. Mis-identified particles of different species 

would not lead to a correlation at small Ak, and would therefore reduce the intercept 

of the correlation function. 

Another possible effect is uncomputed final state interactions, other than Coulom- 

bit. Such final state interactions can in principle shift the correlation function up 

or down. For a large source, such interactions should be of decreasing importance. 

Yet another possibility is narrow resonance decay. Here a narrow resonance 

decays at late times far from the collision region. One of its decay products interferes 

with a directly produced particle. Therefore, Ak - l/r where T is the particle 

lifetime. This leads to a narrow spike for small k. For the CERN experiments, such 

resonances would have to have a width of less than 40 Mev, to contaminate the 

result, and they would have to be copiously produced. We would naively expect 

that narrow resonances would be most copiously produced in the central region. It 
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is unlikely they could shift the intercept by a large amount, but their effect must be 

estimated properly before concluding there is a serious discrepancy with the data. 

Finally, fits to experimental data are often most heavily weighted where error 

bars are the smallest. This is typically far away from Ak = 0 The fit is typically 

made to a theoretical distribution function. In the GMKS model, the particles are 

assumed to be emitted from a well defined decoupling surface. Cascade simulations 

indicate that this assumption is a very crude one. The shape of the correlation 

function may in fact not be generally well fit by a Gaussian. 

Figure Captions: 

1. A space-time diagram for ultra-relativistic nuclear scattering. The two nuclei 

are incident along t = z and t = -t, and collide at t = z = 0 At some formation 

proper time rf the particles thermalize and expand hydrodynamically until the 

decoupling time rd 

2. The sum of the two paths which identical particles may take to generate a 

Hanbury-Brown-Twiss correlation. 

3. The H-B-T correlation function for bosons and fermions. Notice that the 

correlation goes to zero for Ak 2 l/R where R is the source size. The intercept 

at zero Ak is 2 for bosons and 0 for fermions. 

4. The effect of a Coulomb correction to the H-B-T correlation function. 

5. a) Pion production rate as a function of time in a cascade simulation. b) 

The spatial origin of the pions in the cascade simulation. c)The correlation 

between momentum and rapidity for the pion source. 
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